The role of data in Green Software

A challenge for every business

I. ELIMINATE 2 UTILIZE 3. ALLOCATE

3. ALLOCATE

Carbon data across GCP regions

Google Cloud Region	Location	Google CFE%	Grid carbon intensity (gCO ₂ eq/kWh)	Google Cloud net operational GHG emissions	
europe-central2	Warsaw	20%	576	0	
europe-north1	Finland	91%	127	0	Low CO ₂
europe-southwest1	Madrid	*	121	0	Low CO ₂
europe-west1	Belgium	82%	110	0	Low CO ₂
europe-west2	London	57%	172	0	
europe-west3	Frankfurt	60%	269	0	
europe-west4	Netherlands	53%	282	0	
europe-west6	Zurich	85%	86	0	Low CO ₂
europe-west8	Milan	*	298	0	
europe-west9	Paris	*	59	0	Low CO ₂

FOR LEADS: 4. EDUCATE

Sustainability in Tech

Checklist for wattx projects

Sustainability in Tech	1
Definition	3
Planning	4
Life-cycle Assessment (LCA) for digital solutions	4
Product specification for the Sustainability Assessment	4
Overall assessment and metrics	8
Direct metrics: Sustainability measurement	8
Proxy metrics	8
Infrastructure	8
2.1 Architecture	9
2.2 Implementation	9
2.3 Interfaces	10
2.4 Measurement	11
2.4.0 Customer Devices	11
2.4.1 Sustainability report	11
Backend	12
3.1 Architecture	12
3.1.1 Language	12
3.1.2 Database	12
3.1.3 Frameworks	13
3.2 Implementation	13
3.2.1 Database	13
3.2.2 Storage	13
3.2.3 Backups	14
3.2.4 Algorithms	15
3.2.5 Dependency	15
3.3 Interfaces	16
3.3.1 Product team / tester is your friend	16
3.3.2 FE is your friend	16
3 3 3 Public APT	17

wattx INSIGHTS

July 2022

Building Sustainable Digital Products

wattx

Example: Languages & Algorithms

	Energy
(c) C	1.00
(c) Rust	1.03
(c) C++	1.34
(c) Ada	1.70
(v) Java	1.98
(c) Pascal	2.14
(c) Chapel	2.18
(v) Lisp	2.27
(c) Ocaml	2.40
(c) Fortran	2.52
(c) Swift	2.79
(c) Haskell	3.10
(v) C#	3.14
(c) Go	3.23
(i) Dart	3.83
(v) F#	4.13
(i) JavaScript	4.45
(v) Racket	7.91
(i) TypeScript	21.50
(i) Hack	24.02
(i) PHP	29.30
(v) Erlang	42.23
(i) Lua	45.98
(i) Jruby	46.54
(i) Ruby	69.91
(i) Python	75.88
(i) Perl	79.58

	Time
(c) C	1.00
(c) Rust	1.04
(c) C++	1.56
(c) Ada	1.85
(v) Java	1.89
(c) Chapel	2.14
(c) Go	2.83
(c) Pascal	3.02
(c) Ocaml	3.09
(v) C#	3.14
(v) Lisp	3.40
(c) Haskell	3.55
(c) Swift	4.20
(c) Fortran	4.20
(v) F#	6.30
(i) JavaScript	6.52
(i) Dart	6.67
(v) Racket	11.27
(i) Hack	26.99
(i) PHP	27.64
(v) Erlang	36.71
(i) Jruby	43.44
(i) TypeScript	46.20
(i) Ruby	59.34
(i) Perl	65.79
(i) Python	71.90
(i) Lua	82.91

	Mb
(c) Pascal	1.00
(c) Go	1.05
(c) C	1.17
(c) Fortran	1.24
(c) C++	1.34
(c) Ada	1.47
(c) Rust	1.54
(v) Lisp	1.92
(c) Haskell	2.45
(i) PHP	2.57
(c) Swift	2.71
(i) Python	2.80
(c) Ocaml	2.82
(v) C#	2.85
(i) Hack	3.34
(v) Racket	3.52
(i) Ruby	3.97
(c) Chapel	4.00
(v) F#	4.25
(i) JavaScript	4.59
(i) TypeScript	4.69
(v) Java	6.01
(i) Perl	6.62
(i) Lua	6.72
(v) Erlang	7.20
(i) Dart	8.64
(i) Jruby	19.84

The Computer Language Benchmarks Game

Node js versus TypeScript fastest programs

vs C++ vs Dart vs Java vs TypeScript

Always look at the source code.

These are only the fastest programs. Look at the other programs. They may seem more-like a *fair* comparison to you.

spectral-norm

source	secs	mem	gz	busy	cpu load
Node js	1.68	62,068	999	6.05	89% 90% 91% 90%
TypeScript	5.38	32,860	441	5.43	100% 0% 0% 0% 0%

JavaScript:

source code

```
/* The Computer Language Benchmarks Game
   http://benchmarksgame.alioth.debian.org/
   contributed '
*/

enst cluster = require('cluster');
   const numCPUs = require('os').cpus().length * 2;
   var fs = require('fs');

const d = parseInt(process.argv[2])
```

TypeScript:

source code

```
/* The Computer Language Benchmarks Game
   http://benchmarksgame.alioth.debian.org/
   direct transliteration of Greg Buchholz's C program
   contributed by Isaac Gouy
*/

crerence path="./Include/node/index.d.ts" /-

const w = +process.argv[2]
   const h = w

let bit_num = 0, i = 0, byte_acc = 0
```

More insights from...

Communities

- climateaction.tech
- greensoftware.foundation
- climatechange.ai
- ulfca.earth
- 🧕 climatedesigners.org

Books

- 1. ELIMINATE Z UTILIZE 3. ALLOCATE
- 4. EDUCATE

Data is the new oil!

Let's NOT just build refineries again!

Talk to me about details!

Dr. Simon Müller CTO & Managing Director

simon@wattx.io

