Getting Serious

QDOUT
SECUrty

NYC LeadDev 2023

Fleanor Saitta
Systems Structure Lid.

Part One: Thinking

What is a System?’?

Systermns exist 1o do things In the world

1o be useful, they need 1o have certain emergent
oroperties

Whole-system properties whnich occur in a specific
context

Require unified effort 1o deliver

Properties you care aoout

« (Correctness « Observabllity
« Performance * SECurty
« Efficiency « [Resilience

. Relicbility

What is Security”

A secure system is one that:

« Enables a chosen set of people o predictably
accomplish specific goals

« Does so in the face of actions by a chosen set
of adversaries

« Predictably prevents that chosen set of
adversaries from

What is Resllience’”?

The abllity of a system o deal with unforeseen
mModes of fallure without complete failure

Resilience is a property of numans, Not code

Designing for Resilient security

Designing poth processes and fechnical systems
N accordance with specific principles leads 1o
desired emergent properties

Properties of fechnical artifacts vs. properties of
NUMAN Processes

Component Principles

A few useful system design principles:
« OSfatelessness/Logiclessness

o [mmutabllity and ephemerality

« Canonical Sfores

otate and Logic

Services snould eifher do computation or Nolo
statfe, Not both

Complex components are unpredictable

mmutabllity and Ephemerdality

Data, configuration, and memory are all state
IMMutable systems eliminate unnecessary state

Respinning a cluster resets state

Minimal, Canonical State

Cvery plece of stafte should exist canonically in

exactly one place

As few systems as possible should be stores of
state

ANy duplicated state must be validated

Process Principles

And a few for the human side of the org:
« Declare and Generate
« Design for Failure

« Decide af the Edge
« Slack

Declare, don't Program

Declarative configurations are easler for poth
NuUMaNs aNd computers 1o create, compose, and
validate

Use memory safe languages, parser generators,
stfrongly typed languages, and state machine
generafors

Mitigations Always rai

KIll Bug Classes

Security engineering changes
that don't involve killing bug
classes are emergency response
WOrk

~..unless those changes Kkill
fraversal instead

Make a plan for each class and
layer In advance and crosscheck

Design for Failure

Failure and compromise are inevitable

Design components and systems to handle both
oredictaple and unpredictable types of failures

Inink albbout security controls as a whole, assuming
that some layers will always fail

Bulld the system youd like 1o have during o
compromise or outage

Decentrdlize Decisionmaking

Crpower teams and engineers 1o work
autoNomously, so decisions can Nappen wnere
oeople have full confext

FOCUS ON coordination and communicaTtion over
CONTro|

ENsure teams have thick horizontal relationsnips
oufside of formal processes

Slack

esllience reguires feams to have downtime

IMproving any emergent property fakes maore
fime than the bare minimum

Apply hard caps fo feature velocity, ensure
Oeople take vacations, have large on-cal
rofations, and frack out of hours work

Part lwo: Doing

When to Start

~Or your product:

« NNk albout risks for users and the company early
« Make smart language and framework choices

« Lef someone else do hard stuff like auth

« Pay atfenfion to where data goes — maximdal
orivacy Is cheaper

Make sure it's a real product before going further

When to Start

-Or your company.
« Make it real first

« Nof pre-A or before 10 technical staff

» Do start pre-B

« Keep Saas systems simple until you start

N OO AW Ny

seven Iimmedaiarte ACTions

Hire atf least one each ops and [engineer
\cke sure you have forreal fested backups
—Qsy SaasS fools on SSO; Yubikeys for 2FA
Get rid of your Office and Windows footorint
Laptop fleet management (e.g. Jamf)
Thinkst Canaries in your VPCs/network

Basic log cenfralization

GCovernance

o [fthe C[EFOT]O isn't on board it won't work
« SOMEONE Nas To ownN security
« Nof the CI1O; idedlly a peer
» Proably fractional for the first 3 years
* FINish your vegetaples
o [NINk albbout your iIncentives
« Qualitative metrics, Nnot guantifative

Detection

* YOuU Nneed to log a lof of stuff somewhere
o [t will cost money
* YOU Need someone 1o ook at the logs
* HirlNg tThem will cost even more; oufsource

o |f your product means you have to deal with
non-credit card fraud, that's a core
competency

Code 1s Not an Asset

« YOU spend lines of code fo buy features

Cvery line of code is an ongoing cost

s your feature worth 1it?/

lools that let humans write less code are gooo

cvery fool and lilorary is also an ongoing cost
« \Velocity averages out; technical delot I1s drag
« Most security debft is dark

ne Front ENo

You probaply don't know what Js runs on your site
Advertising = Malware
Post-spectre wel — CSPs, CORP/COOP/COIRB

3ackend infegrations are easier 1o control

Beware GraphQll

The supply Chain

You also don't know wnhat runs on your backenao
Need 1o be aple to reproduce point In fime

Let someone else figure out a lilbrary was
oackdoored first

Artifact management with configuration in git and
logged deploys

AUQAITS

Red team reviews are for festing iIncident response i
vou dlready understand your environment

-ull access ‘grey pox” festing with source and prod-
ke access

—arly fest on an MVP once you frameworks are set

Retfest high-risk components or new approaches

Product security

You getf 1o design your aftacker's moftivation level
and the problems they have 1o solve

spend as much fime designing unhappy paths as
NapPy oNes

Know where each automated business or security
decision in your flows

Document this before each sprint and check it affer

You are responsiple for the impact of your work
on people’s lives.

PersonNas 1O cxaminea

« A domestic violence victim seeking an
aportion

« A gueerfeen

« A Union organizer

Startup looking to get
serious abbout security?

Let's talk.

ello@structures.systems

@ Fleanor Saitfo
Systerms Structure Lid.

	Getting Serious�about�Security
	Part One: Thinking
	What is a System?
	Properties you care about:
	What is Security?
	What is Resilience?
	Designing for Resilient Security
	Component Principles
	State and Logic
	Immutability and Ephemerality
	Minimal, Canonical State
	Process Principles
	Declare, don’t Program
	Mitigations Always Fail
	Kill Bug Classes
	Design for Failure
	Decentralize Decisionmaking
	Slack
	Part Two: Doing
	When to Start
	When to Start
	Seven Immediate Actions
	Governance
	Detection
	Code is Not an Asset
	The Front End
	The Supply Chain
	Audits
	Product Security
	Slide Number 30
	Personas to Examine
	Slide Number 32

