
Monolith-ifying
perfectly good
microservices

Monolith-ifying
perfectly good
microservices

happens

"Why don't we
just…"

Intercom is kind of

BIG
(for a Ruby on Rails app)

Intercom is kind of

BIG
(for a Rails app)

Thank you for
coming to my

talk!
scanlanb

A
LOT
of work

The
Three Acts

of
Intercom's

architecture

Act 1.

The Setup.

Act 1.

The Setup.

(Insert rocket-ship
emoji here)

Act 2.
The Confrontation.

We started
building new
features in
standalone
applications

We extracted
billing into
its own Rails
app

Extract billing into its
own Rails app

Serverless
looks
kinda cool?!

Keep the
monolith
running

Act 3.
The Resolution.

We got good at
Linting

Upgrades
Test Reliability

Test speed
Code Ownership

Deployments
Scaling MySQL

Caching
…

We got good at
Linting

Upgrades
Test Reliability

Test speed
Code Ownership

Deployments
Scaling MySQL

Caching
…

We
rewrote

some core
stuff

Webhooks

Webhooks

Webhooks
Reimplemented in the Rails

Monolith

Help Centre
Copy and pasted

into the
Rails Monolith

Intercom Proprietary and Confidential

Challenges with current architecture
Building new or changing existing
features requires changes to two
repositories. It requires additional
thought about bundling changes in each
repository to prevent bugs arising from
different versions of applications running
in production. Also adds a layer of
complexity to reading the code for
features as you need to grasp code
across two repositories.

Intercom Proprietary and Confidential

Challenges with current architecture
The standalone Rails application needs
to be kept up to date by the team. This is
coming at a significant cost. We haven’t
stayed on top of Rails upgrades. We are
now reactively performing upgrades in
response to security vulnerabilities
getting discovered in dependencies. The
last time we did this, we also caused a P1
by accidentally breaking the help centre
for mobile SDKs

Copying and pasting
instantly fixed…

Upgrades!
Observability!
Developer ergonomics!
Availability!

Surprising benefits

Team fluidity

Operations

Oncall

AI

A
LOT

more to do.

A
LOT

more to do.

Lessons.

Lessons.

Thank you for
coming to my

talk!
scanlanb

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Intercom is kind of BIG (for a Rails app)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Extract billing into its own Rails app
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29:
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Challenges with current architecture
	Slide 35: Challenges with current architecture
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Oncall
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

