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A 
LOT
of work





The 
Three Acts 

of 
Intercom's 

architecture
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Act 2. 
The Confrontation.



We started 
building new 
features in 
standalone 
applications
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looks 
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Keep the 
monolith
running



Act 3.
The Resolution.
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Test speed
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Deployments
Scaling MySQL 

Caching
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We
rewrote 

some core
stuff





Webhooks



Webhooks



Webhooks
Reimplemented in the Rails 

Monolith



Help Centre
Copy and pasted 

into the 
Rails Monolith



Intercom Proprietary and Confidential

Challenges with current architecture
Building new or changing existing 
features requires changes to two 
repositories. It requires additional 
thought about bundling changes in each 
repository to prevent bugs arising from 
different versions of applications running 
in production. Also adds a layer of 
complexity to reading the code for 
features as you need to grasp code 
across two repositories.



Intercom Proprietary and Confidential

Challenges with current architecture
The standalone Rails application needs 
to be kept up to date by the team. This is 
coming at a significant cost. We haven’t 
stayed on top of Rails upgrades. We are 
now reactively performing upgrades in 
response to security vulnerabilities 
getting discovered in dependencies. The 
last time we did this, we also caused a P1 
by accidentally breaking the help centre 
for mobile SDKs



Copying and pasting 
instantly fixed…

Upgrades!
Observability!
Developer ergonomics!
Availability!



Surprising benefits



Team fluidity



Operations



Oncall



AI
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