From Dashboard Soup to
Observability Lasagna

Building Better Layers

¥

Martha Lambert
Product Engineer

incident.10

What we’ll cover

1. A process to unsoup your dashboards
2. The importance of a layered stack

3. Technical tips for great olly UX

Rehabihty

-

_

Proactive

Know'eolge that our system
will be Fine most of the time

N

~

J

Reactive

Confidence that we can

Qanaﬂe it quickh/ when it's no

\

t

_J

Reliability

——

Proactive

Knowledge that our system
k W|“ l:e Fme most O‘F tL\e time

~

Reactive

Confidence that we can

L\omolle it qwckly when it's not

~

/

N

Great obserw\hsl.ty

Observability
evangelist

/~/I||
- _\

January March Now

Me Launch on-call

\ ,

Unsouping our stack

Predict ®

How should my system work?

v

Prove #
what does it o«ctua“t/ do?

V

Measure "\

what questions can't I answer?

® Predict

=
How should my system work?

Alerts ------= > MNotifications

HTTP

Sentry

@ Beep

Aler‘tw\anager

Do«ta\o(og

3600/IP/min

HTTP
Alert ingestion
Sentry CToTTTT T TTT s
Alert events ! Alerts
Alert source
120/source/min | 120/route/min
Aleﬂtmamager 600/ min I
N
Do:tao(o«i
Schedu le,s

Incidents

3/route/min

Unl]mi‘te_cl

Escalations

\ b

SMS
2/ 'tl/pe/ user/min
On-caller = Slock
10 burstable
Mobile app

Ewmail

60/»\‘.7\

200/ min

180/ min

200/ min

QOO/MM

Htte

Se.ntrc/

Alert events
> | Alert source
120/source/min

Alertmanager

Da‘to«o(og

Htte

Sentry

Alert events
> | Alert source
120/source/min

‘4krtmanager

Do«‘tao(og

Can we handle multiple alert storms at once?

Prove

What actually happens?

We can handle multiple alert storms at once

We can handle multiple alert storms at once

— We’re doing what our users expect
— The rest of our app is unaffected
— We could handle more load if we needed to

What questions can’t you answer?

— What are we rate limiting?
— What delays are our users experiencing?
— Where are our bottlenecks?

V\ Measure

What actually happens?

But how does dashboard soup happen?

1. They answer overly-specific, now irrelevant
questions

2. They are static and disconnected from the rest
of your debugging stack

Your dashboards are a
product

And your englneers are your customers

i The Observability Lasagna

Overview ;M
Dashboard -

System - -~ 3 |
Dashboard .«% = =

Traces

The Observability Lasagna

(L —_—m=
Overview ;mwxmﬁiwhﬁEWwp; =
Dashboard ————— ~— [=
System S
Dashboard Logs =

Traces

Connect your layers

Each layer of your stack should clearly
point to the next level down

The Observability Lasagna

-

uuuuuuuuuu

Overview
Dashboard

System
Dashboard

Traces

= Overview dashboard

Infrastructure health

I A — Overview dashboard

Infrastructure health

Pods overview dashboard

Cloud SQL instance CPU usage

100%
80% _
CPU utilisation: workload-level © 60%
40%
100.0%
20%
o
80.0% 0%
60.0% 15:45 15:50 15:55 16:00 16:05 16:10 16:15 16:20 16:25 16:30 16:35
40.0% == incident-io-producti in = incid producti in-standby
20.0%
0.0% = Peak database pool utilisation (pod) ©
15:45 15:50 15:55 16:00 16:05 16:10 16:15 16:20 16:25 16:30 16:35 16:40 - I o - .
Name ~ Last * 20% 10% 0% 66.7% 50% 50% 0%
== Average: cron/cron 0.6%
== Average: exporter/postgres-exporter 5.4% ' H ‘
= Aversae: excorterfulo-exportr O%% |y uwundudyn ‘ ll IIMII ([RYIRITTTE N
Memory utilisation: workload-level ® 26.7% 33.3% 20% 0% 100% 86.7% 100%
100.0%
80.0% | ——
HAMmLLM] l|m||u - ! M
60.0%
Open database pool connections
40.0% P P o
20.0% = web
== worker
0.0%
15:45 15:50 15:55 16:00 16:05 16:10 16:15 16:20 16:25 16:30 16:35 16:40 .\ == events
Name ~ Last * ' == escalator-events
== Average: cron/cron 21.2% (== nudges
== Average: exporter/postgres-exporter 10.6% == alerts
== Average: exporter/twilio-exporter 131% == oncall-worker

16:40

60%

e

[NRFINNEREY N

..... i
- i
1

| L i :
gt

nnnnnnnnnnn

Infrastructure health

Queue health

Overview dashboard

Infrastructure health

Queue health

Rate limits

Infrastructure health

Queue health

Rate limits

Alert sources

nnnnnnnnnnn

Infrastructure health

Queue health
Rate limits

Alert sources

Alert routes

nnnnnnnnnnn

Infrastructure health

Queue health
Rate limits

Alert sources

Alert routes

Escalations

ggggg

Escalations

Escalations

Top-level overview of { where our ion worker advances due escalations using the tick function

Oldest tick due © Worker capacity (Executor) ©

6s

as

2 | s *
\
0ofecenidfeasiniBBsdsBoillncnocccnonnnnan

\
Ak N”\”'J' AN ML AN
\ MWW o
‘.””\'l“'l'“l I ‘l”“" AN = 16:45

Ui | 16:20 16:25 16:30 16:35 16:40

== capacity == acquire == work
In-progress © Due © Ticks
3 tick/s
2 tick/s
1tick/s
0 tick/s

16:20 16:25 16:30 16:35 16:40 16:45
== advanced == expired

Infrastructure health

Queue health

Rate limits

Alert sources

Alert routes

aaaaaaaaaa

Notifications Overview dashboard

Overview
Dashboard

= SSM 363“W o :*.w .“li

sutagstnessisi st aussessusnnne

System
Dashboard

The Observability Lasagna

Traces

Logs

~ By organisation

README

Pick an organisation

You must select an organisation from the table to the right to filter the graphs.

Currently viewing:

« ID: | 81J1CNGB1FBAATCHSDO18ZZYIN
« Name: incident.io Smoke Testing

Ticklogs @

escalation=01JQVIGYSMISEFBEXESIFBVVZ
escalation=81JQVIGYSMIS6FBEX1ESIFBVVZ
escalation=01JQVIGYSMISEFBEXTESIFBVVZ

outcome=advanced
outcome=advanced

outcome=advanced

statestriggered
statestriggered
state=triggered

Organisations ®
D

01JICNG81FOAA7CMSD018ZZY3N

duration=6.629818466
duration=6.031563678
duration=6.048048163
duration=6.635478855
duration=6.065281164
duration=8.027493145
duration=6.686276491 age=8.48901626

age=91.207454692
age=71.033345839
age=56.922022293
age=28.867670405
age=138.208166355
age=8.455954502

duration=6.3166616 age=0.162786713
duration=6.842760004 age=1.451161879
duration=8.679532047 age=9.469566883

> escalation=01JQVIGYSMJSEFBEXTESIFEVVZ outcome=advanced state=triggered
> escalation=01JQ JARZQ statestriggered
> escalation=01JQVIGYBMISEFBEXTESJFEVZ outcome=advanced statestriggered
> escalation=01JQVIGYSMJSEFBEXTESIFEVVZ outcome=advanced state=triggered
> escalation=81JQVIGYBMIS6FBEX1ESIFEVVZ

> escal = 3] statestriggered
> escalation=01 &) state=triggered
> 2]

> escalation=01JQ JARZQ statestriggered
> escalations JARZQ statestriggered
> escal =01 7JARZQ state=triggered
> escalation=01 7JARZQ state=triggered
> ion=01 JARZQ state=triggered
> escalation=e1 7JARZQ state=triggered
> escalation=e1 1QDENCTH2H state=triggered

duration=6.17879855 age=8.258569195

duration=0.029850468 age=110.859711244
duration=0.041339527 age=88.928195627
duration=0.055858828 age=68.676047533
duration=0.039920835 age=48.351702776
duration=0.632087216
duration=8.09193395
duration=8.255999368

age=6.930987323
age=132.440454834

age=27.828616185000602

Name 7

incident.io Smoke Testing

Tick duration

07

13:30

Events &

3evtsim [[]

13:35 13:40

13:45

13:50

PARATNNAT

annn

The Observability Lasagna

Overview
Dashboard

System
Dashboard

Traces

The Observability Lasagna

Overview —
Dashboard ééﬁg
System %;%?
Dashboard Logs =

Traces

i The Observability Lasagna

Overview ;M
Dashboard -

System - -~ 3 |
Dashboard .«% = =

Traces

?ﬁ Practical tips

How do we actually implement this?

Make user 1impact

your lens

Build observability that shows you what
your end users are experiencing

Outcome field on metrics

e TickOutcome stri

(

TickOutcomeArchived TickOutcome = "archived"
TickOutcomeExpired TickOutcome = "expired"

TickOutcomeGracePeriod TickOutcome ""grace_period"
TickOutcomeAdvanced TickOutcome ""advanced"
TickOutcomeAwaitScheduleCommit TickOutcome = "await_schedule_commit"
TickOutcomeError TickOutcome "error"

Track user observed times

Tick execution delay (seen by worker)

2s
175 s
158
1.25s
1s

750 ms
500 ms

250 ms

e p95

16:30

®

16:35

16:40

16:45

Connect metrics
to logs

Always anchor metrics to a corresponding
log with more detail

Event logs

.Info(ctx, “Escalation ticked", olly, maplstringlanyf

"event": "escalation_executor_tick",

"outcome": outcome,

"duration": time.Since(startAt).Seconds(),

"escalation_initial_tick_delay_seconds": lo.Ternary(
time.Since(escalation.TickDueAt).Seconds() > 0,
time.Since(escalation.TickDueAt).Seconds(), O,

)r

"escalation": escalation.ID,

"source": tickSource,

"organisation_id": escalation.OrganisationID,
"escalation_idempotency_key": escalation.IdempotencyKey,
"escalation_start_at": escalation.StartAt,
"escalation_age_seconds": time.Since(escalation.StartAt).Seconds(),
"escalation_grace_period_seconds": escalation.GracePeriodSeconds,
"escalation_initial_state": escalation.CurrentTransition.State(),
"escalation_initial_tick_due_at": escalation.TickDueAt,

Visuallse your limits

Know how much wiggle room you have

Capacity metrics

Worker capacity (Executor) ©

beploy quaci‘ty ohp |

7s —"

o - ; :

4 o

2

) ‘ll

- — Il I Ll
1:25 11:30 1:35 1:40 1:45 1:50 1:55 12:00 12:05 12:10

== capacity == acquire == work

Practical tips

1. Make user impact your lens

2. Connect metrics to logs

3. Visualise your limits

Don’t do 1t alone

Build your observability stack with your
team to get them bought 1n

Game days
— Quarterly drill of incident management scenario
— Closed book exercise

— See observability stack used in the wild

Observability Lasagna

Exercise your system
Connect your layers
Make user impact your lens

Don’t do it alone

