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What we’ll cover

1. A process to unsoup your dashboards
2. The importance of a layered stack

3. Technical tips for great olly UX






Rehabihty

-

\_

Proactive

Know'eolge that our system
will be Fine most of the time

N

~

J

Reactive

Confidence that we can

Qanaﬂe it quickh/ when it's no

\

t

_J




Reliability

——

Proactive

Knowledge that our system
k W|“ l:e Fme most O‘F tL\e time

~

Reactive

Confidence that we can

L\omolle it qwckly when it's not

~

/

N

Great obserw\hsl.ty









Observability
evangelist

/~/I||
- \_\

January March Now

Me Launch on-call

\ ,




Unsouping our stack

Predict ®

How should my system work?
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# Prove

What actually happens?



We can handle multiple alert storms at once



We can handle multiple alert storms at once

— We’re doing what our users expect
— The rest of our app is unaffected
— We could handle more load if we needed to



What questions can’t you answer?

— What are we rate limiting?
— What delays are our users experiencing?
— Where are our bottlenecks?



V\ Measure

What actually happens?



But how does dashboard soup happen?

1. They answer overly-specific, now irrelevant
questions

2. They are static and disconnected from the rest
of your debugging stack



Your dashboards are a
product

And your englneers are your customers
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Connect your layers

Each layer of your stack should clearly
point to the next level down
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Infrastructure health

I A — Overview dashboard



Infrastructure health

Pods overview dashboard

Cloud SQL instance CPU usage
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Infrastructure health
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Infrastructure health
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Escalations

Escalations

Top-level overview of { where our ion worker advances due escalations using the tick function

Oldest tick due © Worker capacity (Executor) ©
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Logs

~ By organisation

README

Pick an organisation

You must select an organisation from the table to the right to filter the graphs.

Currently viewing:

« ID: | 81J1CNGB1FBAATCHSDO18ZZYIN
« Name: incident.io Smoke Testing

Ticklogs @
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?ﬁ Practical tips

How do we actually implement this?



Make user 1impact

your lens

Build observability that shows you what
your end users are experiencing



Outcome field on metrics

e TickOutcome stri

(

TickOutcomeArchived TickOutcome = "archived"
TickOutcomeExpired TickOutcome = "expired"

TickOutcomeGracePeriod TickOutcome ""grace_period"
TickOutcomeAdvanced TickOutcome ""advanced"
TickOutcomeAwaitScheduleCommit TickOutcome = "await_schedule_commit"
TickOutcomeError TickOutcome "error"




Track user observed times

Tick execution delay (seen by worker)
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Connect metrics
to logs

Always anchor metrics to a corresponding
log with more detail



Event logs

.Info(ctx, “Escalation ticked", olly, maplstringlanyf

"event": "escalation_executor_tick",

"outcome": outcome,

"duration": time.Since(startAt).Seconds(),

"escalation_initial_tick_delay_seconds": lo.Ternary(
time.Since(escalation.TickDueAt).Seconds() > 0,
time.Since(escalation.TickDueAt).Seconds(), O,

)r

"escalation": escalation.ID,

"source": tickSource,

"organisation_id": escalation.OrganisationID,
"escalation_idempotency_key": escalation.IdempotencyKey,
"escalation_start_at": escalation.StartAt,
"escalation_age_seconds": time.Since(escalation.StartAt).Seconds(),
"escalation_grace_period_seconds": escalation.GracePeriodSeconds,
"escalation_initial_state": escalation.CurrentTransition.State(),
"escalation_initial_tick_due_at": escalation.TickDueAt,




Visuallse your limits

Know how much wiggle room you have



Capacity metrics

Worker capacity (Executor) ©
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Practical tips

1. Make user impact your lens

2. Connect metrics to logs

3. Visualise your limits



Don’t do 1t alone

Build your observability stack with your
team to get them bought 1n



Game days
— Quarterly drill of incident management scenario
— Closed book exercise

— See observability stack used in the wild



Observability Lasagna

Exercise your system
Connect your layers
Make user impact your lens

Don’t do it alone



