LLM Deployment:

) DOUBLEWORD

Agenda

What will we learn?

m The real problem with API-based Al
m \What self-hosting actually means
m When it’s the right choice (and when it’s not)

m What it really takes to make it work

But first... Hil

m Meryem Arik - CEO & Co-founder @Doubleword
m About Doubleword:
o We’re a self-hosted inference platform purpose-built for enterprises
o Specializing in on-premise and VPC Al Deployments
o Deep expertise in inference and Al model deployments
o Our whole founding team used to be physicists once upon a timel!

m (Doubleword used to be TitanML)

Interested in self-hosting or Al inference at scale? Let’s chat after!

aaaaaaaa

A brief history of this talk

The case for 4-bit precision:

k-bit Inference Scaling Laws

Tim Dettmers | Luke Zettemoyer

Abstract

,InfoQ

April 2024

SEEEXLLAL
RN YT I LA AL
AR YYYII LA

R NN N

QCon

InfoQ

International Software Conferences

SAN FRANCISCO
LONDON
NEW YORK
BOSTON

PCAMLOPS LDN - APRIL TALKS

Navigating LLM
Deployment: Tips,
Tricks, and Techniques

Meryem Arik
CEO & Co-founder, TitanML

April 2025

aaaaaaaa

What is self-hosting?

What is self-hosting?

Hosted Al APIs vs Self-Hosting

What is self-hosting?

Al APIs: Provider-Owned Models and Infrastructure

User Prompt ! i Generative Al GPUs
| | Model

D [

Response GPU GPU
\ R

AVe Fireworks Al
@ oOpenAl ANTHROP\C ©F ' (I Grok & cohere

What is self-hosting?

Al APls: One Model, Many Customers

|]

@ i i Generative Al GPUs
i @ : Model
I ' - =)
— T 1 e i 2% 3%
T 3 | 2 —
—
___________ ! GPU GPU
— ..) - . O
X N GPU GPU

AVz Fireworks Al
@ openAl ANTHROP\C @& © (I Grok o cohere

mmmmmmmmmmm

What is self-hosting?

Self-Hosting: Your Models, Your Infra, Your Control

User Prompt Generative Al GPUs
Model
> -+
BB RD
= ES (22
—_—
BB BB
Responss g8 (&2

CCCCCCCC

When would | want to
self-host?

What is self-hosting?

Al APls: One Model, Many Customers

= i Generative Al GPUs !

i E] ; Model ;

' ' _— SR ;

T T — T) X 2% !

[z:] i !

T =2 | 2 | P i
— i ;
SRR i i GPU GPU :
= 5 i — ;

I l !

: | X N GPU GPU :

What is self-hosting?

Hosted Al APIs: The Impact

Pros:

m Easy to set up - someone else manages the infrastructure

m Cheaper at small scale

Cons:

m Sending data and IP to a 3rd party environment

m Models are not yours

m Scaling issues: Rate limits, high latency, poor throughput, expensive at scale

m Only access to generic one-size fits all models

What is self-hosting?

Self-Hosting: Your Models, Your Infra, Your Control

User Prompt Generative Al GPUs
Model
> -+
BB RD
= ES (22
—_—
BB BB
Responss g8 (&2

What is self-hosting?

Self-Hosted Al: The Impact

Pros:

m All data and IP stays in your secure compute environment

m You own the full application including the models

m No rate limits, opportunity for lower latency, higher throughput, cheaper at scale

m Access and deploy any Al model including specialised ones

Cons:
m Harder to set up

m You need to manage the infrastructure

What is self-hosting?

Hosted Al APIs vs Self-Hosting

e FEarly and easy experimentation
with public or non-sensitive
data

e Applicationis not very latency /
throughput sensitive

Sensitive data or mission critical
application

Applications deployed at scale
Domain specific application

Multi-cloud / On-premise set up

CCCCCCCC

What infrastructure do | need to
think about when self-hosting?

) DOUBLEWORD

Everything Needed to

{é} Core Components

Hardware

Model repo

Q Orchestration

Self-healing

LLM-aware Autoscaler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Models

Inference engine

cl/cD

LLM-aware Scheduler

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

P API Access & Security

(© Observability

API Gateways

Authentication

Logging & monitoring

Dashboards & Analytics

Authorization

Role based access
control

Alerts

<

Qo

o@ Management

Front-end / Ul

Model approval process

3rd party integrations

Multi-modal support

Wide architecture
support

Broad Model Support

Multi-cluster & multi-
cloud management

Deployment & model
management

Chargeback system

Fine-tuned model
support

Auxiliary model support

Multi-deployment
aggregation

oo

oo Core Application Level Functionality

Vector DBs

Document Intelligence

Guardrails

Q Testing and Resilience

Load Testing

Agents

Model evaluation

Multi-stage pipelines

Scaling Behaviour

) DOUBLEWORD

Everything Needed to

{é} Core Components

Hardware

Model repo

Q Orchestration

Self-healing

LLM-aware Autoscaler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Models

Inference engine

cl/cD

LLM-aware Scheduler

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

P API Access & Security

(© Observability

API Gateways

Authentication

Logging & monitoring

Dashboards & Analytics

Authorization

Role based access
control

Alerts

<

Qo

o@ Management

Front-end / Ul

Model approval process

3rd party integrations

Multi-modal support

Wide architecture
support

Broad Model Support

Multi-cluster & multi-
cloud management

Deployment & model
management

Chargeback system

Fine-tuned model
support

Auxiliary model support

Multi-deployment
aggregation

oo

oo Core Application Level Functionality

Vector DBs

Document Intelligence

Guardrails

Q Testing and Resilience

Load Testing

Agents

Model evaluation

Multi-stage pipelines

Scaling Behaviour

) DOUBLEWORD

Everything Needed to

@ Core Components

Hardware

Model repo

Q Orchestration

Self-healing

LLM-aware Autoscaler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Models

Inference engine

cl/cD

LLM-aware Scheduler

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

P API Access & Security

(© Observability

API Gateways

Authentication

Logging & monitoring

Dashboards & Analytics

Authorization

Role based access
control

Alerts

<

Qo

o@ Management

Front-end / Ul

Model approval process

3rd party integrations

Multi-modal support

Wide architecture
support

Broad Model Support

Multi-cluster & multi-
cloud management

Deployment & model
management

Chargeback system

Fine-tuned model
support

Auxiliary model support

Multi-deployment
aggregation

oo

oo Core Application Level Functionality

Vector DBs

Document Intelligence

Guardrails

Q Testing and Resilience

Load Testing

Agents

Model evaluation

Multi-stage pipelines

Scaling Behaviour

) DOUBLEWORD

Everything Needed to Self-Host your Al Inference

:El} Core Components

Hardware

Models

Model repo

Inference engine

Q Orchestration

Self-healing

Cl/CD

LLM-aware Autoscaler

LLM-aware Scheduler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

p API Access & Security

og Management

Q% Broad Model Support

© Observability

Eg Core Application Level Functionality

Vector DBs

Agents

Document Intelligence

Model evaluation

Guardrails

Multi-stage pipelines

Q Testing and Resilience

Multi-modal support

Fine-tuned model
support

Load Testing

‘ Scaling Behaviour

Wide architecture

support

Auxiliary model support

) DOUBLEWORD

Everything Needed to

{é} Core Components

Hardware

Model repo

Q Orchestration

Self-healing

LLM-aware Autoscaler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Models

Inference engine

cl/cD

LLM-aware Scheduler

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

P API Access & Security

(© Observability

API Gateways

Authentication

Logging & monitoring

Dashboards & Analytics

Authorization

Role based access
control

Alerts

<

Qo

o@ Management

Front-end / Ul

Model approval process

3rd party integrations

Multi-modal support

Wide architecture
support

Broad Model Support

Multi-cluster & multi-
cloud management

Deployment & model
management

Chargeback system

Fine-tuned model
support

Auxiliary model support

Multi-deployment
aggregation

oo

oo Core Application Level Functionality

Vector DBs

Document Intelligence

Guardrails

Q Testing and Resilience

Load Testing

Agents

Model evaluation

Multi-stage pipelines

Scaling Behaviour

Self-hosting Infrastructure

Starting with the basics...

Which model?

User Prompt Generative Al GPUs
Model

~ e ()

E GPU GPU
N —
.. -\

EX DD
Response GPU GPU

Self-hosting Infrastructure

Which model should | pick?

1. Open-source model base [Llama, Mistral, Gemma]

Why? So you can deploy it and own the deployment.

2. Which one?
What size? ~~ What hardware do | have available?

Don’t forget quantized versions!

3. s it widely supported by common infrastructure?

4. Create a shortlist & systematically test against your use case (With RAG & Prompt tuning)

4

R

Text Arena

OvervieebDev Vision

Task

View rankings across various LLMs on their versatility, linguistic precision, and cultural context across text.

¥ Overall

Rank (UB)

149

1

20

35

37

69

74

Model

& tulu-2-dpo-70b

$2 gqwen3-235b-a22b-no-thinking

& qwe Model size
$£ qwg-32b

$2 qwen3-32b

kA mistral-small-3.1-24b-instruct-2503

$# gwen3-30b-a3b

Score

1169

1394

1367

1335

1328

1295

1295

Text-to-Image

95% CI (%)

+7/-8

+6/-7

+7/-6

E9=S

+8/-10

+10/-9

+7/-12

Search Copilot

Jun 16, 2025 3,077,387 250

Votes

6,658

7,369

11,240

16,280

3,960

3,058

4159

Open Source

Organization icense N

Trustworthy org?mpac..

Alibaba Apache 2.0

Model memory calcul:

i

I.. -I".-: il'ih

Self-hosting Infrastructure

What if that doesn’t work... Fine-tuning

When to Fine-Tune

You need domain-specific tone, structure, or lanquage
RAG isn’t enough (e.qg. classification, function-calling)
Model needs better performance on edge cases

Types of Fine-Tuning

Full fine-tuning - large gains, costly, rarely needed
LoRA / QLoRA - lightweight, efficient, production-ready
Instruction tuning - aligns behavior with task prompts

Best Practices

Llama-3.2-11B-Vision ChartQA Accuracy

2X

1x

Base model Fine-tuned

Source: predibase

Use high-quality, structured data, Start small (1-5k examples) before scaling, Track overfitting - test on

unseen prompts, Always compare to RAG baseline first

Self-hosting Infrastructure

How do | actually get this model running though?

An Inference Enginelll

) DOUBLEWORD

Everything Needed to

@ Core Components

Hardware

Model repo

Q Orchestration

Self-healing

LLM-aware Autoscaler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Models

Inference engine

cl/cD

LLM-aware Scheduler

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

P API Access & Security

(© Observability

API Gateways

Authentication

Logging & monitoring

Dashboards & Analytics

Authorization

Role based access
control

Alerts

<

Qo

o@ Management

Front-end / Ul

Model approval process

3rd party integrations

Multi-modal support

Wide architecture
support

Broad Model Support

Multi-cluster & multi-
cloud management

Deployment & model
management

Chargeback system

Fine-tuned model
support

Auxiliary model support

Multi-deployment
aggregation

oo

oo Core Application Level Functionality

Vector DBs

Document Intelligence

Guardrails

Q Testing and Resilience

Load Testing

Agents

Model evaluation

Multi-stage pipelines

Scaling Behaviour

Self-hosting Infrastructure

How do | actually get this model running though?

LLM

Gy SGL
&) DOUBLEWORD

Ollama - easy to use, non-production, Production ready, high performance
experimentation, consumer hardware inference engines

Inference Engine choice really matters

vLLM vs HuggingFace Inference Time by Batch Size
12.90

- VLM
12 1 mmm HuggingFace - Mo R oy

fary
o
1

oo
L

Inference Time (seconds)

Batch Size

Source: https://medium.com/@alishafique3/vlim-vs-hugging-face-for-high-performance-offline-lim-inference-2d953b4fb3b4

Inference Optimisation in Practice: Speculative Decoding

“The orange cat” =——p r “The orange cat ate”
“The orange cat ate” =—p- ; “The orange cat ate my”
Large Language Mode ‘
“The orange cat ate my” — “The orange cat ate my dinner”
“The orange cat ate my dinner” _»k Titar “The orange cat ate my dinner !”

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Inference Optimisation in Practice: Speculative Decoding

“The orange cat” ——p|
o —p

o

“The orange cat ate my” ——p!
A

Small Model |—
Titan

“The orange cat = e T e .
S (Greedy) Decoding :
New token 1 Probability New token2 Probability
“aab” 0.001 i
“Alice” 0.04 [“my” 0.87 ' my
Large Language Model - - - - ++»——p “The orange cat ale e ee
“ate” 0.9 I “the” 0.02

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Tokens per second

Benchmarks

70 1

60 1

w
o

ey
o

w
o

N
o

10

OPT-1.3b (Hugging Face)
[0 OPT-6.7b (CTranslate?2)
I OPT-13b (AWQ)
I 1 OPT-13b (AWQ) with Spec. Dec.

OPT-1.3b + HF
OPT-13b + AWQ + SD

(9}
|—
3

+
0
N
i
B
o

g

<

+

0

‘C'_) —

b £

O ©
(V]
s
e
o
=t
=
(@]

Nvidia A10 RTX 3060

GPU

RTX 4090

Build the App, Not the Infra!

Work with state-of-the-art inference engines & trusted partners to optimize the inference
for you.

) DOUBLEWORD

Everything Needed to Self-Host your Al Inference

:El} Core Components

Hardware

Models

Model repo

Inference engine

Q Orchestration

Self-healing

Cl/CD

LLM-aware Autoscaler

LLM-aware Scheduler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

p API Access & Security

og Management

Q% Broad Model Support

© Observability

Eg Core Application Level Functionality

Vector DBs

Agents

Document Intelligence

Model evaluation

Guardrails

Multi-stage pipelines

Q Testing and Resilience

Multi-modal support

Fine-tuned model
support

Load Testing

‘ Scaling Behaviour

Wide architecture

support

Auxiliary model support

What about everything else?

The devil is in the detail... here’s what often gets missed:

° Logging, monitoring & alerting
o Log: latency, token count, failures, context length
o Monitor: GPU utilization, queue depth, cache hit rate
o Alerting: latency spikes, O0OMs, token overloads
o Dashboards: per-model and per-tenant views
° Model approval process
o Approved model list by provider
o Internal model risk assessment
o Update & rollback policies
e Chargeback system
o Prompt + output tokens (and model used) per request
o GPU time or compute cost per inference
o Cache hit/miss rates (impacts actual cost)
o User/team attribution
e Etc [Quota management, Model Caching, API rate limiting, Reliability SLAs]

) DOUBLEWORD

Everything Needed to

{é} Core Components

Hardware

Model repo

Q Orchestration

Self-healing

LLM-aware Autoscaler

@ Optimizations
LLM-Aware Load
Balancer

Quantization

GPU Sharing and
Sharding

Models

Inference engine

cl/cD

LLM-aware Scheduler

Multi-Level Caching

Inference Engine
Configuration

Serverless PEFT / LoRA

P API Access & Security

(© Observability

API Gateways

Authentication

Logging & monitoring

Dashboards & Analytics

Authorization

Role based access
control

Alerts

<

Qo

o@ Management

Front-end / Ul

Model approval process

3rd party integrations

Multi-modal support

Wide architecture
support

Broad Model Support

Multi-cluster & multi-
cloud management

Deployment & model
management

Chargeback system

Fine-tuned model
support

Auxiliary model support

Multi-deployment
aggregation

oo

oo Core Application Level Functionality

Vector DBs

Document Intelligence

Guardrails

Q Testing and Resilience

Load Testing

Agents

Model evaluation

Multi-stage pipelines

Scaling Behaviour

What does that look like?

Meet Clara: CTO of MledSure Health

About her:

Requlated environment

Building internal Al assistant

Initially wanted to use OpenAl, but
cyber killed it and struggled with rate
limits

Moved to self-hosting

What she did right (and wrong)

X Took time to swap different
models

["4 Picked Llama3 with quantization
"4 Used fine-tuning for performance
X Didn’t use caching = high latency
"4 Fixed it with a proper inference
engine + metrics

Takeaways

o [/ Self-hosting it’s often necessary and preferable
e [You need more than a model: infra, security, governance matter
e [Don’t build everything from scratch—use the right tools and partners

e [/ Start small, but design for scale from day one

What should you do next?

{4 Decide if self-hosting is in your future
Audit your Al roadmap: Will scale, latency, cost, or compliance force you off hosted APIs in
the next 12-24 months?

"4 Map your gaps
What infra, team skills, or governance tooling do you not have yet? Don’t wait until
deployment day to find out.

"4 Pick a first project
Choose a use case that’s internal, valuable, and not customer-facing. Perfect for testing
infra, model configs, and workflows.

"4 Don’t go it alone
Use existing inference engines, deployment frameworks, and vendor support. Build what’s
unique to you—buy the rest.

Let’s chat!

Want to self-host Al? Let’s talk.

meryem@doubleword.ai OR catch me in person after!

mailto:meryem@doubleword.ai

