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Agenda

What will we learn?

m The real problem with API-based Al
m \What self-hosting actually means
m When it’s the right choice (and when it’s not)

m What it really takes to make it work



But first... Hil

m Meryem Arik - CEO & Co-founder @Doubleword
m About Doubleword:
o We’re a self-hosted inference platform purpose-built for enterprises
o Specializing in on-premise and VPC Al Deployments
o Deep expertise in inference and Al model deployments
o Our whole founding team used to be physicists once upon a timel!

m (Doubleword used to be TitanML)

Interested in self-hosting or Al inference at scale? Let’s chat after!




aaaaaaaa

A brief history of this talk



The case for 4-bit precision:

k-bit Inference Scaling Laws

Tim Dettmers | Luke Zettemoyer

Abstract

,InfoQ

April 2024




SEEEXLLAL
RN YT I LA AL
AR YYYII LA

R NN N

QCon

InfoQ

International Software Conferences

SAN FRANCISCO
LONDON
NEW YORK
BOSTON




PCAMLOPS LDN - APRIL TALKS

Navigating LLM
Deployment: Tips,
Tricks, and Techniques

Meryem Arik
CEO & Co-founder, TitanML

April 2025






aaaaaaaa

What is self-hosting?



What is self-hosting?

Hosted Al APIs vs Self-Hosting



What is self-hosting?

Al APIs: Provider-Owned Models and Infrastructure
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What is self-hosting?

Al APls: One Model, Many Customers
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What is self-hosting?

Self-Hosting: Your Models, Your Infra, Your Control
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When would | want to
self-host?



What is self-hosting?

Al APls: One Model, Many Customers
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What is self-hosting?

Hosted Al APIs: The Impact

Pros:

m Easy to set up - someone else manages the infrastructure

m Cheaper at small scale

Cons:

m Sending data and IP to a 3rd party environment

m Models are not yours

m Scaling issues: Rate limits, high latency, poor throughput, expensive at scale

m Only access to generic one-size fits all models



What is self-hosting?

Self-Hosting: Your Models, Your Infra, Your Control
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What is self-hosting?

Self-Hosted Al: The Impact

Pros:

m All data and IP stays in your secure compute environment

m You own the full application including the models

m No rate limits, opportunity for lower latency, higher throughput, cheaper at scale

m Access and deploy any Al model including specialised ones

Cons:
m Harder to set up

m You need to manage the infrastructure



What is self-hosting?

Hosted Al APIs vs Self-Hosting

e FEarly and easy experimentation
with public or non-sensitive
data

e Applicationis not very latency /
throughput sensitive

Sensitive data or mission critical
application

Applications deployed at scale
Domain specific application

Multi-cloud / On-premise set up
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What infrastructure do | need to
think about when self-hosting?
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Self-hosting Infrastructure

Starting with the basics...

Which model?
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Self-hosting Infrastructure

Which model should | pick?

1. Open-source model base [Llama, Mistral, Gemma]

Why? So you can deploy it and own the deployment.

2. Which one?
What size? ~~ What hardware do | have available?

Don’t forget quantized versions!

3. s it widely supported by common infrastructure?

4. Create a shortlist & systematically test against your use case (With RAG & Prompt tuning)
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Self-hosting Infrastructure

What if that doesn’t work... Fine-tuning

When to Fine-Tune

You need domain-specific tone, structure, or lanquage
RAG isn’t enough (e.qg. classification, function-calling)
Model needs better performance on edge cases

Types of Fine-Tuning

Full fine-tuning - large gains, costly, rarely needed
LoRA / QLoRA - lightweight, efficient, production-ready
Instruction tuning - aligns behavior with task prompts

Best Practices

Llama-3.2-11B-Vision ChartQA Accuracy

2X

1x

Base model Fine-tuned

Source: predibase

Use high-quality, structured data, Start small (1-5k examples) before scaling, Track overfitting - test on

unseen prompts, Always compare to RAG baseline first



Self-hosting Infrastructure

How do | actually get this model running though?

An Inference Enginelll
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Self-hosting Infrastructure

How do | actually get this model running though?

LLM

Gy SGL
&) DOUBLEWORD

Ollama - easy to use, non-production, Production ready, high performance
experimentation, consumer hardware inference engines




Inference Engine choice really matters

vLLM vs HuggingFace Inference Time by Batch Size
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Source: https://medium.com/@alishafique3/vlim-vs-hugging-face-for-high-performance-offline-lim-inference-2d953b4fb3b4



Inference Optimisation in Practice: Speculative Decoding

“The orange cat” =——p r “The orange cat ate”
“The orange cat ate” =—p- ; “The orange cat ate my”
Large Language Mode ‘
“The orange cat ate my” — “The orange cat ate my dinner”
“The orange cat ate my dinner” _»k Titar “The orange cat ate my dinner !”

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a



Inference Optimisation in Practice: Speculative Decoding

“The orange cat” ——p|
o —p
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A
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“The orange cat = e T e .
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New token 1 Probability New token2 Probability
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“Alice” 0.04 [ “my” 0.87 ' my
Large Language Model - - - - ++»——p “The orange cat ale e ee
“ate” 0.9 I “the” 0.02

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a
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Build the App, Not the Infra!

Work with state-of-the-art inference engines & trusted partners to optimize the inference
for you.
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What about everything else?

The devil is in the detail... here’s what often gets missed:

° Logging, monitoring & alerting
o Log: latency, token count, failures, context length
o Monitor: GPU utilization, queue depth, cache hit rate
o  Alerting: latency spikes, O0OMs, token overloads
o  Dashboards: per-model and per-tenant views
° Model approval process
o Approved model list by provider
o Internal model risk assessment
o  Update & rollback policies
e Chargeback system
o Prompt + output tokens (and model used) per request
o  GPU time or compute cost per inference
o  Cache hit/miss rates (impacts actual cost)
o  User/team attribution
e  Etc [Quota management, Model Caching, API rate limiting, Reliability SLAs]
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What does that look like?

Meet Clara: CTO of MledSure Health

About her:

Requlated environment

Building internal Al assistant

Initially wanted to use OpenAl, but
cyber killed it and struggled with rate
limits

Moved to self-hosting

What she did right (and wrong)

X Took time to swap different
models

["4 Picked Llama3 with quantization
"4 Used fine-tuning for performance
X Didn’t use caching = high latency
"4 Fixed it with a proper inference
engine + metrics



Takeaways

o [/ Self-hosting it’s often necessary and preferable
e [ You need more than a model: infra, security, governance matter
e [ Don’t build everything from scratch—use the right tools and partners

e [/ Start small, but design for scale from day one



What should you do next?

{4 Decide if self-hosting is in your future
Audit your Al roadmap: Will scale, latency, cost, or compliance force you off hosted APIs in
the next 12-24 months?

"4 Map your gaps
What infra, team skills, or governance tooling do you not have yet? Don’t wait until
deployment day to find out.

"4 Pick a first project
Choose a use case that’s internal, valuable, and not customer-facing. Perfect for testing
infra, model configs, and workflows.

"4 Don’t go it alone
Use existing inference engines, deployment frameworks, and vendor support. Build what’s
unique to you—buy the rest.



Let’s chat!

Want to self-host Al? Let’s talk.

meryem@doubleword.ai OR catch me in person after!
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