
1

LLM Deployment:
Tips, Tricks & Techniques

General Use

June 2025

2

Agenda

What will we learn?

■ The real problem with API-based AI

■ What self-hosting actually means

■ When it’s the right choice (and when it’s not)

■ What it really takes to make it work

But first… Hi!

■ Meryem Arik - CEO & Co-founder @Doubleword

■ About Doubleword:

○ We’re a self-hosted inference platform purpose-built for enterprises

○ Specializing in on-premise and VPC AI Deployments

○ Deep expertise in inference and AI model deployments

○ Our whole founding team used to be physicists once upon a time!

■ (Doubleword used to be TitanML)

Interested in self-hosting or AI inference at scale? Let’s chat after!

4

A brief history of this talk

1Chapter

April 2024

November 2024

April 2025

June 2025

9

What is self-hosting?

2Chapter

What is self-hosting?

Hosted AI APIs vs Self-Hosting

What is self-hosting?

Generative AI
Model

User Prompt

Response

AI APIs: Provider-Owned Models and Infrastructure

GPUs

What is self-hosting?

Generative AI
Model

AI APIs: One Model, Many Customers

GPUs

x N

What is self-hosting?

Generative AI
Model

User Prompt

Response

Self-Hosting: Your Models, Your Infra, Your Control

GPUs

14

When would I want to
self-host?

3Chapter

What is self-hosting?

Generative AI
Model

AI APIs: One Model, Many Customers

GPUs

x N

What is self-hosting?

Hosted AI APIs: The Impact

Pros:

■ Easy to set up - someone else manages the infrastructure

■ Cheaper at small scale

Cons:

■ Sending data and IP to a 3rd party environment

■ Models are not yours

■ Scaling issues: Rate limits, high latency, poor throughput, expensive at scale

■ Only access to generic one-size fits all models

What is self-hosting?

Generative AI
Model

User Prompt

Response

Self-Hosting: Your Models, Your Infra, Your Control

GPUs

What is self-hosting?

Self-Hosted AI: The Impact

Pros:

■ All data and IP stays in your secure compute environment

■ You own the full application including the models

■ No rate limits, opportunity for lower latency, higher throughput, cheaper at scale

■ Access and deploy any AI model including specialised ones

Cons:

■ Harder to set up

■ You need to manage the infrastructure

What is self-hosting?

Hosted AI APIs vs Self-Hosting

● Early and easy experimentation
with public or non-sensitive
data

● Application is not very latency /
throughput sensitive

● Sensitive data or mission critical
application

● Applications deployed at scale

● Domain specific application

● Multi-cloud / On-premise set up

20

What infrastructure do I need to
think about when self-hosting?

3Chapter

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

Self-hosting Infrastructure

Starting with the basics…

Generative AI
Model

User Prompt

Response

GPUs

Which model?

Self-hosting Infrastructure

Which model should I pick?

1. Open-source model base [Llama, Mistral, Gemma]

Why? So you can deploy it and own the deployment.

2. Which one?

What size? ~~ What hardware do I have available?

Don’t forget quantized versions!

3. Is it widely supported by common infrastructure?

4. Create a shortlist & systematically test against your use case (With RAG & Prompt tuning)

Self-hosting Infrastructure

Model size

Open Source

Trustworthy org?

Task

Model memory calculator

Self-hosting Infrastructure

What if that doesn’t work… Fine-tuning

When to Fine-Tune

You need domain-specific tone, structure, or language

RAG isn't enough (e.g. classification, function-calling)

Model needs better performance on edge cases

Types of Fine-Tuning

Full fine-tuning – large gains, costly, rarely needed

LoRA / QLoRA – lightweight, efficient, production-ready

Instruction tuning – aligns behavior with task prompts

Best Practices

Use high-quality, structured data, Start small (1–5k examples) before scaling, Track overfitting – test on
unseen prompts, Always compare to RAG baseline first

Source: predibase

Self-hosting Infrastructure

How do I actually get this model running though?

An Inference Engine!!!

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

Self-hosting Infrastructure

How do I actually get this model running though?

Ollama - easy to use, non-production,
experimentation, consumer hardware

Production ready, high performance
inference engines

Inference Engine choice really matters

Source: https://medium.com/@alishafique3/vllm-vs-hugging-face-for-high-performance-offline-llm-inference-2d953b4fb3b4

Inference Optimisation in Practice: Speculative Decoding

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Inference Optimisation in Practice: Speculative Decoding

https://medium.com/@TitanML/in-the-fast-lane-speculative-decoding-10x-larger-model-no-extra-cost-f33ea39d065a

Build the App, Not the Infra!

Work with state-of-the-art inference engines & trusted partners to optimize the inference
for you.

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

What about everything else?

The devil is in the detail… here’s what often gets missed:
● Logging, monitoring & alerting

○ Log: latency, token count, failures, context length
○ Monitor: GPU utilization, queue depth, cache hit rate
○ Alerting: latency spikes, OOMs, token overloads
○ Dashboards: per-model and per-tenant views

● Model approval process
○ Approved model list by provider
○ Internal model risk assessment
○ Update & rollback policies

● Chargeback system
○ Prompt + output tokens (and model used) per request
○ GPU time or compute cost per inference
○ Cache hit/miss rates (impacts actual cost)
○ User/team attribution

● Etc [Quota management, Model Caching, API rate limiting, Reliability SLAs]

Everything Needed to Self-Host your AI Inference
Core Components

Hardware Models

Model repo Inference engine

Orchestration

Self-healing CI/CD

LLM-aware Autoscaler LLM-aware Scheduler

Optimizations

LLM-Aware Load
Balancer Multi-Level Caching

Quantization Inference Engine
Configuration

GPU Sharing and
Sharding Serverless PEFT / LoRA

API Access & Security

API Gateways Authentication

Authorization Role based access
control

Management

Front-end / UI Multi-cluster & multi-
cloud management

Model approval process Deployment & model
management

3rd party integrations Chargeback system

Broad Model Support

Multi-modal support Fine-tuned model
support

Wide architecture
support Auxiliary model support

Observability

Logging & monitoring Dashboards & Analytics

Alerts Multi-deployment
aggregation

Core Application Level Functionality

Vector DBs Agents

Document Intelligence Model evaluation

Guardrails Multi-stage pipelines

Testing and Resilience

Load Testing Scaling Behaviour

What does that look like?

Meet Clara: CTO of MedSure Health

About her:

● Regulated environment
● Building internal AI assistant
● Initially wanted to use OpenAI, but

cyber killed it and struggled with rate
limits

● Moved to self-hosting

What she did right (and wrong)

● ❌ Took time to swap different
models

● ✅ Picked Llama3 with quantization
● ✅ Used fine-tuning for performance
● ❌ Didn’t use caching = high latency
● ✅ Fixed it with a proper inference

engine + metrics

Takeaways

● ✅ Self-hosting it’s often necessary and preferable

● ✅ You need more than a model: infra, security, governance matter

● ✅ Don’t build everything from scratch—use the right tools and partners

● ✅ Start small, but design for scale from day one

What should you do next?

✅ Decide if self-hosting is in your future
Audit your AI roadmap: Will scale, latency, cost, or compliance force you off hosted APIs in
the next 12–24 months?

✅ Map your gaps
What infra, team skills, or governance tooling do you not have yet? Don't wait until
deployment day to find out.

✅ Pick a first project
Choose a use case that’s internal, valuable, and not customer-facing. Perfect for testing
infra, model configs, and workflows.

✅ Don’t go it alone
Use existing inference engines, deployment frameworks, and vendor support. Build what’s
unique to you—buy the rest.

Let’s chat!

Want to self-host AI? Let’s talk.

meryem@doubleword.ai OR catch me in person after!

mailto:meryem@doubleword.ai

