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Get to Know Me

I'm Carla Vieira, Senior Data Engineer and Google 

Developer Expert in Machine Learning. I hold a 

master’s degree in Artificial Intelligence, with 

research focused on building trustworthy and 

explainable AI systems. Listed as a Rising Star in 

Women in AI Ethics.

@carlaprvieira / carlavieira.dev



Source: Better Images of AI 
project



Potential Harms 
Caused by AI 
Systems 

BIAS AND DISCRIMINATION

DENIAL OF INDIVIDUAL AUTONOMY AND 
RIGHTS 

01

02
NON-TRANSPARENT, UNEXPLAINABLE, 
OR UNJUSTIFIABLE OUTCOMES 03

INVASIONS OF PRIVACY04
UNRELIABLE, UNSAFE, OR POOR-
QUALITY OUTCOMES 05

Leslie, D. (2019). Understanding 

artificial intelligence ethics and safety: 

A guide for the responsible design 

and implementation of AI systems in 

the public sector. The Alan Turing 

Institute.



What is 
bias in ML/AI?

Algorithmic bias is when a computer 

system reflects the implicit values

of the humans who created it.

Source: Better Images of AI 
project

http://bit.ly/algorithmic_bias
http://bit.ly/values_ethics


How bias 
become part of 
AI systems?

Let's explore how this happens in the 

ML Lifecycle.

Source: Better Images of AI 
project
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Data 
generation bias

"Datasets are like textbooks for your 

student to learn from. Textbooks have 

human authors, and so do datasets."
(Cassie Kozyrkov)
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Historical 
bias
"Historical bias arises even 
if data is perfectly 
measured and sampled, if 
the world as it is or was 
leads to a model that 
produces harmful 
outcomes." (Suresh et. al. 
2019)

Source: Humans Are Biased. Generative AI Is Even Worse 

https://www.bloomberg.com/graphics/2023-generative-ai-bias/


Representation 
bias
Representation bias occurs 

when the development sample 

underrepresents some part of 

the population.



Evaluation 
bias
"The dominant values in ML 

are Performance, 

Generalization, (...) 

Efficiency, and Novelty. 

These are often portrayed as 

innate and purely technical." 

(Birhane et al., 2021)



Evaluation 
bias
Recent research has proposed 

new metrics to evaluate the 

performance of the model 

considering notions of bias, 

fairness and discrimination.

Examples:

• measure the accuracy in the groups separately: a facial recognition 

model can have an accuracy of 80% on average, but 60% for black 

women and 90% for white men.

• another way is to assess disproportionate impacts, that is, to assess the 

balance between false positives for each group;



Bias doesn’t come 
from AI algorithms,
it comes from 
people.

Source: Better Images of AI 
project



Black-box 
problem

The current generation of AI Systems 

are what we call black-boxes.



HOW DOES THE 
MODEL WORKS?

WHAT IS DRIVING 
DECISIONS?

CAN I TRUST THE 
MODEL?

INPUT OUTPUTML MODEL

BIAS

BIAS

BIAS



What can we 
do?

Machine intelligence makes human 

morals more important.

"We cannot outsource our 

responsibilities to machines."

(Zeynep Tufekci)

http://bit.ly/algorithmic_bias
http://bit.ly/algorithmic_bias


Product Thinking
Human-centered
Approach

Thinking of AI as a product...



Balance people-first and technology-first thinking



Who is your invention for?
Who benefits from it? 
This is a great time to consult with a UX (user experience) 

specialist and map out your application’s users.



Lower risk Higher risk



Is it ethical to proceed? 

Just because you can do something, doesn't mean you should.



Think about the humans 
your creation impacts! 
Who benefits and who might be harmed?



What defines high-quality, 
representative data for your 
product?

“An algorithm is fair if it makes predictions that do not favour or 

discriminate against certain individuals or groups based on sensitive 

characteristics.”



Source: https://www.amazon.science/research-awards/success-stories/algorithmic-bias-and-fairness-in-machine-
learning





pair-code.github.io/what-if-tool/

research.google.com/bigpicture/attacking-discrimination-in-
ml/

http://pair-code.github.io/what-if-tool/
https://research.google.com/bigpicture/attacking-discrimination-in-ml/
https://research.google.com/bigpicture/attacking-discrimination-in-ml/


When should the system 
provide explanations?

Trust and explainability are inherently linked



Source: Principles and Practice of Explainable Machine Learning (Vaishak and Ioannis, 2019)

Developers Users Regulators

Explanations are different depending on the 
stakeholder….



• Lack of global explanation methods

• How to avoid ground truth unjustification?

• How can we better evaluate explanations?

• Can we do better explanations for non-expert users?

• How does fairness interact with interpretability?

• How can we build more robust interpretability methods?

• How to combine and deploy interpretable Machine Learning models?

Challenges 



Diversity of perspective 
matters!

Applied data science is a team sport that’s highly interdisciplinary



https://pair.withgoogle.com/guidebook/workshops

https://pair.withgoogle.com/guidebook/workshops


Summary TECHNOLOGY IS NOT FREE 
OF HUMANS

EVERY SINGLE HUMAN IS 
BIASED.

MATH CAN OBSCURE THE 
HUMAN ELEMENT AND GIVE 
AN ILLUSION OF OBJECTIVITY.

01

02

03



Thank you!

@carlaprvieira

carlavieira.dev

http://carlavieira.dev
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